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The analysis of the Timoshenko beam traversed by uniform partially distributed moving 
masses is carried out. Equations of motion are solved by using a finite difference based 
algorithm. The beam response, and the distribution of the shear force and bending moment 
along the beam have been computed. The effects of shear deformation, rotary inertia and 
the length of load distribution on the vibration of the beam have been analyzed. The results 
compare well with those reported in the literature for the limiting case in which the length 
of the load distribution reduces to zero and also the effects of shear deformation and rotary 
inertia are neglected. 
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1. INTRODUCTION 

A moving load produces larger beam deflections and stresses than when the same load acts 
statically. Hence the analysis of structures carrying such loadings is of considerable 
practical importance. Investigation of  bridges on which heavy vehicles travel, and trolleys 
of overhead travelling cranes moving on their girders, are two examples of such dynamical 
systems. 

Since the middle of  the last century, when railway construction began, the problem of 
oscillation of bridges under travelling loads has interested many engineers [1]. Timoshenko 
[2] considered the case of  a pulsating load passing over a bridge, while Inglis [3] performed 
an analysis of trains crossing a bridge, and considered many important factors such as the 
effect of  the moving load, the influences of damping and suspension of locomotives. 

The case of  a concentrated force moving with a constant velocity along a beam, when 
neglecting damping forces, was solved by Timoshenko [4] and an expression for the critical 
velocity was presented. The dynamic analysis of  a simply supported beam carrying a 
moving mass was carried out by Stanisic and Hardin [5]; this is interesting enough in itself, 
but not easily applicable to different boundary conditions. Two prominent publications 
concerning the behavior of a beam carrying a moving concentrated mass under different 
situations are those of  Leech [6] and Cifuentes [7]. 

A comprehensive treatment of the subject for the vibration of structures resulting from 
moving loads, which contains a large number of  related cases, has been given by Fr~ba 
[8]. Ghorashi [9-11] has investigated many cases of  moving load problems. The vibration 
of  an Euler-Bernoulli beam traversed by uniform partially distributed moving mass has 
also been studied [12]. A further investigation has been made by Lin [13], which he has 
discussed with the authors. The authors' response to his comments is given in the 
Appendix. 

The present work extends the scope of  the previous study [12] by considering the 
vibration of  a Timoshenko beam when subjected to a uniform partially distributed moving 
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mass. Evidently, the model considered for the moving mass may be appropriate in cases 
in which the length of the load distribution is not negligible. Furthermore, since no point 
mass exists physically, consideration of an interval for the load distribution enhances the 
reality of the problem formulation. The point mass formulation can be considered as a 
special case of the present problem if the load distribution interval is assumed to be small 
[10]. Therefore, the degree of influence of parameters such as the length of the load 
distribution, rotary inertia and shear deformation could also be evaluated. 

In the present work, the following assumptions are adopted. First, the beam is assumed 
to be of constant cross-section with uniform mass distribution: furthermore, its dynamic 
characteristics are described by the Timoshenko beam equations. Second, the effects of 
inertia for both the beam and the moving mass are taken into account with the 
gravitational effect of load. Third, the load moves with a uniform speed and is guided in 
such a way that it keeps contact with the beam at all times. Fourth, the computations are 
performed for simply supported boundary conditions. Finally, as to the initial conditions, 
the beam is assumed to be free of either the load or the deflections. 

2. EQUATIONS OF MOTION 

With reference to Figure 1, it is assumed that, at t = 0, the load is starting to enter the 
beam from the left-hand support, at a constant speed V. The reference state of the beam 
is its equilibrium position under its own weight. Hence, at t = 0, all initial conditions of 
the beam are zero. The mass Mp is assumed to be uniformly distributed over a fixed length 
e of the beam. The beam is assumed to be simply supported at both ends. However, the 
analysis and formulation presented are not limited to just these boundary conditions. 

In respect to the effects of shear deformation, the following constitutive equations hold; 

E10~b /Ox = M, ~k - Oy/Ox = S/kAG. (1, 2) 

Here E is the Young's modulus of elasticity, A is the constant cross-sectional area of the 
beam, G is the shear modulus, S is the beam shear force, M is the bending moment, 
is the slope of the beam due to the bending and k is the shear coefficient, which depends 
on the shape of the beam cross-section. 

Furthermore, in respect to the effect of rotary inertia of the beam and that of the moving 
mass, the two equations of motion for an element of the beam are 

aS OZy I [  dZY]D 
O-7 + p A ~ - F + -  ~ M.g + M.-~i~ j =0,  

OM -I az@ ' d'-@ S--~-Sx + p --f~ ± pflp ~ D = O, (3,4) 

where p and pp are the respective mass densities of the beam and the load, while I and 
Ip denote the corresponding moments of their cross-sectional area, respectively. In writing 
the equations of motion, it has been assumed that the load is quite flexible and is spread 
along the beam with no possibility of separation. Therefore, values of shearing force and 
bending moment in the load have been neglected in comparison with their corresponding 
values for the beam. If the load is able to bear shearing forces and bending moments, 
it can no longer be assumed that the deflections and slopes in the beam and correspon- 
ding points of the mass are identical. Hence the "no separation" assumption would be 
violated. 
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The factor D depends on the interval of motion, which is the part of the beam supporting 
the moving mass: 

I I - - H ( x - - ¢ - - E / 2 ) ,  0 ~ < t < e / V ,  

H(x - ~ + el2) - H(x - ¢ - el2), e/V <~ t < LI  V, (5) 
D =  H ( x -  ~ + el2), L I V < . . t < ( L + e ) I V ,  

0, (L + e)/V ~< t, 

where ~ = Vt - e/2 is as shown in Figure I, and H(x) is defined as 

~1 ,  x > 0 ,  
H(x) = 0.5, x = 0, (6) 

L 0, x < 0 .  

The dynamic part of the moving load acceleration in equation (3) is expected to 
dominate the gravitational acceleration, when the load is travelling at high velocities. 

For the total derivatives in equations (3) and (4) one may write 

d2y O2y - i/20"-y d'-O 020 " O~'~b 
dt z - Ot' + 2 V  + Ox-' dt'- - or- + 2 v  + v z ~x ~. (7, 8) 

In view of equations (1) and (2), equations (7) and (8) reduce to, 

-d-[ i -  + O t O x k A G - ~  + V -~x + V - ~  + V , (9) 

d'-~b 02~b V O2~b V ~OM vC3M1 
d?  - Ot 2 + Ox Ot + - H I  ~ + Ox J" 

(lO) 

Substituting equations (9) and (10) into equations (3) and (4), with ay/Ot and ad//Ot denoted 
by z and Q, respectively, yields 

[g az vaz v [as vasl [ . M I - ] M p D  OS Oz 
+ -~ + a x k A G -Yi + a x J + v Q + v -~  j j - --;-  + -~  + p A -~ = O , (11) 

pplp + V +-El  - ~  + V D + S - - - ~  pI  =0.  (12) 

Similarly, for equations (1) and (2), one obtains 

dM/Ot = E l  aQ/dx,  OS/Ot = kAG[Q - az/Ox]. (13, 14) 

The four first order partial differential equations (1 I)-(14) can now be solved numerically 
for the four dependent variables M, S, Q and z. 

In order to derive the final equations in a more general form, and suitable for performing 
numerical calculations with reduced computational errors, it is appropriate to convert the 
equations into equivalent non-dimensional ones. The characteristic variables for the 
current problem may be considered as the following: L, characteristic length; K = x//~A, 
characteristic deflection; K / L  = 2, characteristic rotation; 2c, characteristic velocity 
(c = x//~-p); L/2c,  characteristic time; p A L ,  characteristic mass. Hence, the non-dimen- 
sional variables are 

y,  = y /K ,  tis. = ~,12, x,  = x / L ,  t, = 2ct /L,  

Alp. = M f l p A L ,  V. = VI2c, e. = elL. 
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The non-dimensional shear force and bending moment may now be defined as 

M. = 0~k/0x., S.  = ~b. - Oy./ax,,. (15, 16) 

Therefore, by considering equations (I) and (2), one obtains 

M. = (r~/EIK)M, S. = S / k A G 2 .  (17, 18) 

Similarly, for Q. and z., defined as 

Q. = O~b./Ot., z. = Oy./Ot., (19, 20) 

it can be seen that, by using the definitions for Q and z, 

Q. = (L /22c)Q,  z. = ( L / K 2 c ) z .  (21, 22) 

Hence, equations (11)-(14) can be transformed to the following non-dimensional forms; 

[g Oz..Oz..Fas. v aS.l ] ( ~ )  Oz. aS.  
. + ~ +  V.yx . -  V.L-~-+ ax._]+ V . [ Q . +  V.M.]  + ~ + ~ T x  = 0 ,  

(23) 

£0Q. v[OM. 0M,]]z _0Mo eaL + .ox+ . L -T i~+V.Tx . ] [  T x + ~ S . +  -~-=0, (24) 

aM./at. = aQ./ax., as./at. = Q .  - az./ax.. (25, 26) 

Here, ~ = kG/E22,  R = p f lp /p I  and g. = (L /2¥2)g .  

3. FINITE DIFFERENCE FORMULATION 

The set of  four first order partial differential equations (23)-(26) need to be solved for 
M., S., Q. and z.. To this end, these differential equations may be transformed into 
equivalent algebraic finite difference ones. 

Assuming q~(x, t) to be any of  the dependent variables, and that, at beam node i, 
~bi = q~(x, t), then at points neighboring (x, t), ~b may be represented as 

dp,+ t = dp(x + d x ,  t), dp + = c~(x, t + At) ,  d?7+ , = q~(x + A x ,  t + At) .  (27) 

Then, using a four-point difference scheme yields 

4~(x + Ax/2, t + ~t/2) = ~[~,++, + ~,+, + ~,+ + ~,] + O[Ax 2, At2], (28) 

which states that the function value at the center of  an x - t  grid may be well approximated 
by the average of  its values at the grid nodes. 

Similarly, by using the definition of  partial derivatives, 

-~- x + , t + = ~-~ [~b~+, + q~? - q~;+, - ~b,] + O [ A x  2, At2], (29) 

x +  , t + = ~-A--~x [qb~++ ~ + dp,÷ ~ - (a~ - dp,] + O[Ax2, At2], (30) 

Furthermore, since the term adp/at + VOdp/dx has been generated in the final form of the 
governing equations, it is appropriate to find its corresponding finite difference 
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representation. Using equations (29) and (30), and assuming A x / A t  = V, i.e., at each time 
interval one space interval is travelled by the moving mass, one obtains 

-~ + V dp x + ---~-, t + - -  =-~-~(~b++,-~b,). (31) 

Equations (28)-(31) are considered to be the governing equations of the current problem; 
i.e., equations (23)-(26) may be transformed into equivalent finite difference equations. For  
this purpose the non-dimensional space and time increments may be defined as Ax .  = A x / L  
and A t. = 2cA t /L .  Transforming the non-dimensional variables in equations (23)-(26) into 
their corresponding dimensional ones for simplicity, one obtains 

M++, + M T - ( 1 / V ) ( Q T + , - Q + ) =  M , + , +  M , + ( I / V ) ( Q i + , - Q , ) =  A~, (32) 

1 + At 
S,.++ ~ + S + + "~ (z, +~ - z +) - - -  (QT+, + Q+ ) 

l , 
=Si+,  + S , - - p ( z , + ,  - z,) + (Q,+, + Q i ) =  A.,  (33) 

M++t - M + - (eAx/2)(S[+,  + S+) - 22V(Q++ t + Q+) - 2RV2'Q[+ ~O - 2RV222M++ ,D 

= - M , + ,  + M, + (~Ax/2)(S~+, + S~) - 22V(Q,+, + Q,) - 2R22VQ,D - 2RA2I, nM,  D 

= A?,  ( 3 4 )  

and 

S++ , -- S? + (V/~)(z++ t + z +) + (2MpAx/~e)[(llAt)z++ , -- (V/At)S++, 

+ (V/4)(Q++, + Q+) + (V2/4)(M++, + M+)]D 

= - (S~+,  - Si) + (V/a)(z ,+,  + z,) - (2MpAx/oce)[g - (1~At)z, + (V/At)S~ 

+ (V/4)(Q,+,  + Q,) + (V2/4)(M,+, + M,)]D = A~. (35) 

Equations (32)-(35) may be expressed as the matrix 

0 I - A t ~ 2  - l / V  S + 

- 1 - ~ A x / 2  - 2 2 V  0 Q+ 

Mp V~D/2~? - 1 hip VD/2~? V/~ z+ 

1 o - 1 / v  o 

0 1 - A t ~ 2  1 /V 

+ 1 -- 2R22I,~D - ~ A x / 2  - 2 ~ V -  2R22VD 0 

MpV2D/2~? 1 - 2MpI'aD/ote M pA x V D /2~e  V/~ + 2MpAxD/cteAl 

M++ i 

S++, 
QL,  

z++ j 

A~ 
,4,2 

A~ , 

A,' 

(36) 

where, y = e / A x  is an integer. Upon introducing, 
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Figure 1. The model of the problem. 
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the set of  algebraic equations to be solved, can be written as 

Ciqi + Diq~ + I = El ,  for i = 1, 2 . . . . .  N - 1, (37) 

where N is the number  of  the nodal points dividing the beam. 
Clearly, if only one of the above equations is used, by having the data at a specific time 

step, the calculation of  parameters at the next time step reduces to the solution of four 
equations with eight unknowns. As will be shown later, the application of  boundary 
conditions reduces this to a set of  four equations with four unknowns. 

4. EULER-BERNOULLI BEAM 

Before proceeding, it is suitable to simplify the results obtained to those for the case 
of  an Euler-Bernoulli beam, where the effects of  shear deformation and rotary inertia can 
be assumed to be negligible. This not only enables one to evaluate the influence of  these 
factors, but also results in a new formulation for analyzing Euler-Bernoulli beam response 
when subjected to dynamic forces due to the motion of  a uniform partially distributed 
mass. It may be recalled that Esmailzadeh and Ghorashi  [12] have presented a formulation 
for the case of  an Euler-Bernoulli beam using a completely different approach.  

3 
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Figure 2. The time history diagram of  the center o f  the beam. 
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Figure 3. The trajectory of motion for the moving mass center. 
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Comparison of the results obtained from these two different algorithms, for the case under 
consideration, may be implemented for evaluation of solution accuracy. 

4.1.  NO SHEAR DEFORMATION (RAYLEIGH BEAM) 

In this case, ~ = dy/Ox and hence in consideration of equation (2) the value of the shear 
coefficient should be made very large (mathematically, infinite). However, consideration 
of very large values for this parameter results in some difficulties, especially regarding S,. 
Therefore, instead of presenting a new formulation with the shear coefficient taken to be 
infinite, one may use the previous results with a sufficiently large value for the shear 
coefficient. The only problem will then be the addition of some computational error in the 
results. Fortunately, an estimation for this error can simply be obtained. From equation 
(2), the following expression may be written for the percentage of error when assuming 
the shear coefficient not to be infinite (a central difference equivalent for the left side has 
been written): 

S / k A  G 200SiA x 
100 ~ ~ k A G ( y , +  1 - y~- I)" (38) 

] 

0.0E + 00 
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i 
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-4 .0E - 03 

-5 .0E - 03 i ] k ] i ] i I I I I i i I L I I ] i 

7 13 19 25 31 37 43 49 55 61 

Nodes 

Figure 4. The beam deflected shape at t = 0. I s. 
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Figure 5. The maximum bending moment variation (positive or negative). 

Since all the parameters  in equat ion (38) are computed  during the solution, the error  
percentage can be calculated at each time step. I f  this error  is more  than the acceptable 
value, then it is only necessary to increase the shear coefficient so that the error  lies in the 
acceptable bound.  Therefore one may be sure that  the shear deformat ion  effect has been 
limited to the feasible amount .  

4.2. NO ROTARY INERTIA (SHEAR BEAM) 

In order  to obtain the formulat ion when neglecting the ro tary  inertia effect, it is only 
necessary to rewrite equat ion (4), d ropping  the term associated with the beam rotary  
inertia. Hence 

S - c3M/ax + pfl ,(d2d//dt2)D = 0, (39) 

Therefore equat ion (34) reduces to 

M++, --  M + --  (~Ax/2)(S++, + S +) - -  2RI/~2Q.++ ,D - 2R ~22M++ ,D 

= --M~+, + M,  + (o~Ax/2)(S~+, + S~) - 2R22VQ,D - 2R22V2M, D 

= A 3. (40) 
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-20 

z_. -lOO 
c~ 
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-420 
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Figure 6. The maximum shear force variation (positive or negative). 
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Figure 7. Part of the time history diagram at the center, for thin beam data. - -  
rotary inertia; . . . .  , no shear deformation; . . . .  , Euler-Bernoulli. 

F i n a l l y ,  e q u a t i o n  (35)  is t r a n s f o r m e d  t o  
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(41)  

H e n c e ,  t h e  f o r m u l a t i o n  w h e n  n e g l e c t i n g  r o t a r y  i n e r t i a  is o b t a i n e d .  
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Figure 8. The time history diagram at the middle, for thick beam data. Key as Figure 7. 
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Figure 9. Part of the time history diagram shown in Figure 8. Key as Figure 7. 

Clearly, if  bo th  the shear de fo rma t ion  and ro ta ry  inertia are to be neglected (resulting 
in the formula t ion  for  the Euler-Bernoul l i  beam),  then a combina t ion  o f  the foregoing 
formula t ions  should be utilized. 

5. A L G O R I T H M  OF SOLUTION 

For  any b o u n d a r y  condit ions,  two c o m p o n e n t s  o f  q, and qs are known at  all times. Fo r  
instance, in the case of  a s imply suppor ted  beam,  

M, = MN = 0, z, = zs = 0. (42) 

Therefore ,  if  q, can be related to qN, a set o f  four  equat ions  with four  unknowns  would 
be generated.  

By using equat ion  (37) it m a y  be s imply verified that  

q, = M s _  ,qs + TN- ,, (43) 

where M N _  I = A I A 2  " " A N _  ,, T N -  I = BI + A I B 2  + A I A 2 B 3  + " " + AtA2"  " A N _  2BN-  ,, 

A t  = - C , ' D ~  and B~ = CT'E~.  Equa t ion  (43) can now be solved for  Si ~, Qi ~, S~ and  Q~. 
Hence,  q, and  qN are computed .  After  having calculated qt and qN, all o ther  q~ m a y  be 
evaluated th rough  implementa t ion  o f  equa t ion  (37), with qs as input.  The  value o f  q, 
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Figure 10. Variation of the maximum beam deflection with the load distribution length. 
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obtained through this back substitution process can be compared with the one obtained 
by using equation (43), and the difference is a measure of the computational error. After 
completing this process, Ej, used for computations of  the next time interval, is calculated 
and the solution continues. 

Finally, since the algorithm gives zi values at each time step, for calculation of deflection 
results standard numerical integration methods are implemented. 

6. NUMERICAL EXAMPLE 

As a numerical example, the above algorithm has been run for the data considered in 
reference [7], in which the point mass case was considered, and the effects of shear 
deformation and rotary inertia of the beam were neglected. However, for the present 
analysis these effects are taken into consideration. The parameters of the problem are as 
follows: L = 4.352 m, E = 2.02 x 10" N/m:, G = 7.7 x 10 ~° N/m', I = 5.71 x 10 -7 m 4, 
p =  15 267kg/m 3, R = 0 . 1 ,  A = 1 - 3 1  x 10 -3m 2, M p = 2 1 - 8 k g ,  V =  27.49 m/s, k = 0 . 7 ,  
N = 61, 3' = 10 and g = 9-806 m/s 2. 

It was observed that for very fine meshes which can model the beam as a continuous 
system (a large value of  N), the computational error increases as a result of too many 
calculations. The error also increases for coarse mesh selections (small N), due to poor 
simulation of the continuous system. The optimal mesh is dependent upon the specific 
problem under consideration and the authors have no general recommendations about it. 

In Figures 2 and 3 are demonstrated, respectively, the time history diagram for the center 
point of  the beam, and the trajectory of  the moving mass center for the above data. The 
beam deflected shape at t = 0.1 s is represented in Figure 4. As can be observed in Figure 
2, when using the present method, the maximum beam deflection is found to be about 
5.78 mm. However, the corresponding value as quoted in reference [7] is 5.84 mm, and the 
maximum static deflection of the beam under consideration is about 3.11 mm. 
Furthermore,  the authors have reported [12] that the maximum beam deflection has been 
evaluated to be 5.73 mm. 

The values of maximum dynamic bending moments and shearing forces generated in 
the beam are very important when designing the load-carrying beams. The respective 
variations of  the maximum bending moment and shearing force (positive or negative) 
induced in the beam with respect to time are illustrated in Figures 5 and 6. As is seen, 
the peak values for these parameters occur almost simultaneously, which is critical from 
a designer's point of  view. Furthermore, it should be noted that these figures are not the 
time history diagrams for the corresponding quantities at a certain point of the beam. They 
represent the maximum values of bending moment and shear force induced at points along 
the beam and each instant of  time. 

The foregoing problem was also solved for cases in which one or both of the parameters, 
shear deformation and rotary inertia are neglected. Part of  the time history diagram for 
the center of  the beam corresponding to the four cases of a Timoshenko beam, a Rayleigh 
beam, a shear beam and an Euler-Bernoulli beam, with the same data as before, is 
presented in Figure 7. It is observed that the Timoshenko beam assumptions correspond 
to some higher maximum beam deflection value. However, for the present problem, this 
difference is quite slight and is limited to 0.1%. The slightness of  this value is predictable, 
since the beam data introduced is for a thin beam. Hence, it may be concluded that the 
Euler-Bernouili beam assumption suffices for this case. 

For  the case of  a thick beam, the following parameters were considered: L = 4-352 m, 
E = 2.02 x 10 ~ N/m 2, G = 7.7 x 10 ~° N/m 2, I = 3.42 x 10 -3 m 4, p = 15 267 kg/m 3, 
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R = 2  x l0 -4, A =0 -2025m -~, M r = 2 0 0 k g ,  V = 5 0 m / s ,  k = 0 . 8 5 ,  N = 6 1 ,  ~ = 6  and 
g = 9.806 m/s 2. 

The time history diagrams for the response of  the center point of  the thick beam are 
presented in Figures 8 and 9. It was observed that for this thick beam data the maximum 
difference between the responses obtained corresponding to Timoshenko and 
Euler-Bernoulli beam assumptions is about 3.6%. Furthermore, as could be deduced from 
Figures 7 and 9, the effect of shear deformation is much more than that of the rotary 
inertia. 

The variation of the maximum dynamic deflection of  the beam with the variation of e/L 
is presented in Figure 10. When performing this analysis, a system with the thick beam 
data was considered. As is seen, increasing e/L always results in decreasing the maximum 
beam deflection. This can be understood as a result of decreasing the time interval in which 
the dynamic force is exerted, and the time during which all of  the load is on the beam. 

7. CONCLUSIONS 

The dynamic behavior of  a Timoshenko beam carrying a partially distributed moving 
mass has been analyzed. The non-dimensionalized equations of  motion were transformed 
into equivalent finite difference ones, and then solved. Results have been presented not 
only for the deflection, but also for the slope, shearing force and bending moment for all 
instants of  time and at selected space nodes. Hence, all the components composing the 
dynamic response of the system have been obtained. The procedure has imposed no 
restricting assumptions on the boundary conditions of  the beam. The computations and 
results for the case of  simply supported beams are found to be in good agreement with 
those obtained for the special case of  negligible shear deformation and rotary inertia, and 
with a short length of  load distribution. As a continuation, the system response has been 
obtained by ignoring either the rotary inertia or the shear deformation, or both of them. 
It was observed that the effect of  shear deformation is usually more important than that 
of  rotary inertia. Furthermore, the total influence of  these factors was observed to be about 
3.6%, and these effects are in the direction of  increasing the maximum beam deflection. 
As a concluding remark, it was observed that by increasing the length of  the load 
distribution (while conserving the total amount  of the load) a decrease in the maximum 
dynamic deflection of  the beam is obtained which is essentially the result of a decrease in 
the time during which the total load acts on the beam. 
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APPENDIX: AUTHORS' REPLY TO Y.-H. LIN [13] 

The authors would like to express their thanks to Professor Y.-H. Lin [13] for his 
comments  on the previous paper  [12]. It should be emphasized that the basic idea in 
reference [12] was to introduce and formulate the moving mass problem when the length 
of  the distributed load distribution is not too small compared with the beam. The beam 
is assumed to be the Euler-Bernoulli one, with partial (not the total) derivative formulation 
for the load acceleration. Furthermore,  only the interval in which all of  the load is on the 
beam has been considered. Much of the foregoing simplifications have been relaxed and 
detailed solutions have been presented in reference [9] and in the present paper. These 
include solutions for motion of distributed loads on Timoshenko beam, using total 
derivative formulation for the load acceleration, and consideration of the motion not only 
when all of  the load is on the beam, but also during the load entrance, departure and, 
finally, for the free vibrations. The comments  given in reference [13], with the 
corresponding replies, are summarized as follows. 

1. "Use of  the Euler-Bernoulli equation is inappropriate . . .  ". It is evident that the 
application of complete formulations for the beam response may lead to a more accurate 
result, as presented here. However, the simple Euler-Bernoulli formulation has been used 
by many investigators (see, e.g., references [14-16]). While this formulation restricts the 
domain of  application, it can well be used in calculating the system response relatively 
accurately. 

2. "Tota l  derivative formulation, instead of  the partial derivative one is expected for proper 
expression of  the moving mass acceleration.. .  ". While for high speeds these formulations 
result in different values, at relatively low speeds the difference is of  practically no 
importance. Therefore, in many papers (see, e.g., references [15, 17, 18]), the partial 
derivative formulation has been utilized, accordingly. However, in reference [9] and the 
present paper, the total derivative formulation has been used in order to find an accurate 
solution for the high load speeds. 
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3. "The presented procedure in reference [12] needs to be modified & order to be applicable 
for beams with boundary conditions other than that of simply supported... ". Equation (5) 
in reference [12] gives the beam deflection function in terms of normalized deflection curves 
for each mode of the vibrating beam. These can be computed through solution of the free 
vibration problem. Hence, after solving equation (9) in reference [12], by substituting the 
result in equation (5), the solution for the beam response, for arbitrary boundary 
conditions, may essentially be obtained. 
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